A következő címkéjű bejegyzések mutatása: fly by wire. Összes bejegyzés megjelenítése
A következő címkéjű bejegyzések mutatása: fly by wire. Összes bejegyzés megjelenítése

2012/05/01

A Concorde-tól az Airbusig - Fly-by-wire Európa utasgépein (AF447 sorozat)

A repülés misztikumok nélkül is csodálatos dolog. Emiatt megkíséreljük emberközelbe hozni azokat a folyamatokat, amelyek a mai technikákhoz, azok bevezetéséhez hozzájárultak. Az Air Frace járat balesetének tanulságait nem lehet a történeti és némi műszaki háttér ismerete nélkül megítélni, így ehhez pici szakmai "tananyagot" is mellékelünk az érdeklődő Olvasónak.Azok a lehetséges és már feltárt hibák, amelyekről szintén értekezünk a sorozatban, egy olyan iparág problémái, amely egyébként elképesztő biztonsággal végzi a dolgát. Egyetlen súlyos baleset is többéves vizsgálat tárgyává válik, tanulságai beépülnek az üzemeltetésbe. Ami persze közúton mindennapos probléma, az itt szenzáció - amelyet sajnos sokan meg is lovagolnak, esetleg épp szakértőként feltűnve nagyívű kinyilatkoztatásokba bocsátkoznak - kellő szakismeret nélkül.

Hogy miért nem kell félnünk valójában egy utasgép fedélzetén, azt viszont sajnos kevés helyen olvashatja el az utazó. Pedig épp ez az utasrepülés egyik legnagyobb vívmánya ... Természetesen mindig van csiszolnivaló, de a valóban modern gépek elterjedése az egyik sarokköve a gazdaságosság és a biztonság növelésének. Európa repülőgéptervezőinek is fontos szerepe van ebben.
Úgy gondoljuk, hogy a verseny hosszútávon egy jó érési folyamatot táplál. Hogy a korszerű technika "hatalomátvételébe" milyen hibák csúszhatnak mégis, arról szintén szót ejtünk. Érdemes tehát nekifutni a maratoni blogposztoknak ...

Sört, ropit tessék ismét a gépek mellé készíteni! Megint nem leszünk rövidek... :))


Visszapillantó

A sorozat előző cikkében a repülőgépek kormányzásának technikai alapjait feszegettük. A cikk végén általánosságban beszéltünk a fly-by-wire rendszerről, megállapítva, hogy az elektromos-elektronikus kormányvezérlés korrekt felépítés esetén nagyban növelheti a biztonságot és könnyebbé, gazdaságosabbá teheti a repülőgépet.  A fly-by-wire-rel jó lehetőségek nyílnak a már korábban is létező digitális repülésvezérlés (navigáció, repülési pályavezérlés, fedélzeti rendszerirányítás) és a kormányvezérlés egyfajta számítógépes hálózatnak megfelelő összekapcsolására, integrálására.
Ez új képességekkel ruházza fel a repülőgépet.

Ez a gyakorlatban azt jelenti, hogy nemcsak a kormányok, hanem a repülés tényleges végrehajtásában közreműködő összes berendezés képes egyetlen "szervezetként" adatbuszokon keresztül együttműködni a repülőgép irányítórendszerében. Ezzel a pilóták munkája, illetve az automatikus repülésvezérlés, a gép rendszerek felügyelete, sőt a lehetségesen előforduló veszélyhelyzetek elkerülése is nagyban segíthető a tárgyalt kereskedelmi típusokon.

Az Airbus digitális fly-by-wire (DFBW) tesztpadja egy módosított A300-as volt a 70-es évek végétől
Az ilyen rendszerek azonban technikailag is annyira összetettek, hogy megkerülhetetlenné válik valamilyen átfogó építési filozófia kidolgozása is a gyártónál a tervezés fázisában. Ezek kialakulásáról és eredményéről is írunk - elsőként Európa vonatkozásában. Hogy milyen eltérések mutatkoznak a tengerentúli alkalmazásokban, azt később külön cikkben elemezzük.

Az Airbus típusok feljesztés gyökerei

Az angol-francia Concorde mellett egy hétköznapibb képességű de jelentősebb sikerű szélestörzsű európai típus lépett a világ elé - immár nyíltan megcélozva a piacból való komolyabb részesedést. Az első kéthajtóműves szélestörzsű, a nagyrészt még hagyományos felépítésű Airbus A300-as a 70-es évek elejétől a közös európai repülőgépgyártást lassanként "bejáratta" . Sőt, néhány év múlva egyes piacokon némi lépéselőnyt is szerzett vele a gyártó a három és négyhajtóműves szélestörzsűeket gyártó amerikai cégekkel szemben (Az amerikai B767 akkor még nem repült).


Az A300-as családba az együttműködő, hadiipari tapasztalattal is rendelkező, nagymúltú európai cégek igyekeztek beépíteni a 80-as évekre már rendelkezésre álló technikát is. A rövidített A300B10 változaton  (A310) alkalmaztak először részleges digitális FBW technológiát az utasrepülésben, majd az A300-600-ason is. Ez még kormányzást nem, csak spoilerek és a szárnymachanizáió vezérlését végezte.

Ugyanakkor előrelépések történtek a hosszútávú repülés cockpit-ergonómiája és automatizálása terén is. A típuscsalád későbbi generációi a fejlesztés folyamán nagyrészt elektronikus műszerfalat kaptak (Glass cockpit / EFIS), és megjelentek a repülésvezérlő flight management megoldások is (FMC/FMS) - hamarosan már a ma elterjedt kezelőfelülettel. A repülőgép a fedélzeti mérnök munkáját is "átvette", a rendszerek állapotáról, hajtóművekről, felmerülő technikai problémákról, az ezekre adandó elsődleges válaszokról a korábbi audiovizuális jelzések mellett szintén a műszerfal centralizált (ECAM) monitora adott grafikus és szöveges információt.
A szélestörzsű 300-as család fejlesztése vezetett a hosszútávú repülés kétfős cockpitjaihoz. Megszületett az úgynevezett "előrenéző pilótakabin" - forward-facing crew cockpit - koncepció a hosszútávú repülésben is, hisz az új gépeken nem volt a pilóták mögött oldalsó pulton dolgozó mérnök, navigátor ...stb.
A300B2-as első generációs, hagyományos műszerfala (Daniel Alaerts)


Az elsőgenerációs A300-asok fedélzeti mérnöki munkahelye
A300B4-600 - már kétszemélyes kabinnal (Konstantin von Wedelstaedt fotója)

Szintén új és előremutató törekvés volt a "dark/quiet" vagyis csendes/sötét pilóakabin koncepció, amely felé a konzorcium elindult. A kifejezés nem szó szerint értendő, de nagy mennyiségű állandó jelzőfénytől szabadították  meg a látóteret, illetve a rendszerek kapcsolópaneljeit. Olyan logika mentén épült ki a kezelőfelület, hogy a bekapcsolt működő rendszerek kapcsolói nem, vagy kis fényerővel világítanak. A teljes fénnyel égő nyomógombok a lekapcsolt, vagy hibás egységekre utalnak. Mindez a pilóták figyelmének túlzott megosztását küszöböli ki. A koncepciót kisebb-nagyobb eltérésekkel más gyártóknál is megtaláljuk.

A kisebb utasgép kategóriában következő európai cél már a szélesebb körben elterjedt B737 - DC-9 kategóriájú gépek komolyabb technológiai túllépése is volt, ami független EU (J.E.T.) projektként indult a 70-es években, de szintén Airbus együttműködésben valósult meg. Ez lett az A320 gépcsalád, amely visszahatott a részben párhuzamosan fejlesztett 300-as termékskálára is.

Az új típus utasgépen addig még be nem járt utakra vitte a gyártót. Rengeteg újabb innováció és mérnöki munka állt az új elgondolások mögött, beleértve számos korábbi megoldás teljes újragondolását is. A kulcs a teljesen digitális fly-by-wire kormányvezérlési rendszerrel érkezett. 

Fly-by-wire - Európai előzmények

Az legelső FBW utasszállító a szuperszonikus Concorde. Az  első tesztpéldány Toulouse-ból, a második Fairfordból szállt fel 1969-ben. Menetrendbe csak 1976-ban állt.


A FBW tárgyalásakor vissza kell térnünk a Concorde-ra is, amely az első fly-by-wire vezérlésű széria-utasgép volt. Ezt azért kell hangsúlyozni, mert sajtón, szakbulváron keresztül tévesen az Airbus típusokhoz kötődik ez a technológiai elsőség.  A rendszert az Aerospatiale tervezte. Ez működtette a kormányokat, emellett védte a túlterhelésektől a gépet a repülésvezérlő rendszer. A repülőgép avionikája vezérlése, elektronikus stabilizációja messze túlmutatott a kor szintjén. Az Automatic Flight Control System (AFCS) elektronikus tolóerővezérléssel működött együtt.

A Concorde kormányvezérlési sémája
A gépnek az analóg FBW csatornákon kívül volt hidromechanikus tartalék kormányvezérlése is. A műterhelők mellett feel computerek segítségével generálták a tapintható kormányerőváltozásokat az repülési és egyensúlyi helyzetnek megfelelően.

A Concorde pilótamunkahelyein nem látható és nem érezhető a FBW jelenléte

Kitrimmelhetők voltak a előállt kormányerők is a kormány semleges pozíciójának változtatásával - hasonlóan egy mechanikus kormányzású géphez. A Concorde tehát a hagyományos kormányzás érzetét igyekezett előállítani a pilóták számára. Ezt a lehetőséget a későbbi digitális FBW-re (DFWB) integrált Airbus repülésvezérlő rendszereknél nem tartották meg.

Huszonhét év után 2003-ban mindössze egyetlen, a fedélzeti rendszerekkel nem összefüggő katasztrófával ment nyugdíjba a jetkorszak egyik legkülönlegesebb, legdrágább és legismertebb ikonja.



A British Airways menetrendben később, 2009-ben a szuperszonikus transzatlanti járatok helyét különleges szolgáltatásokkal, gyorsított utaskezeléssel két módosított, 32 üléses A318-as vette át. Ezek egy közbülső írországi leszállással teljesítik a London LCY - New York JFK távot. A shannoni szabadterületen a tankolás alatt az amerikai hatósági beléptetés is megtörténik, így az utas további procedúrák nélkül, belföldi utasként érkezhet New Yorkba. Visszaúton a járat a jet stream légköri áramlás hátszelének kihasználásával leszállás nélkül üzemel. Félrevezetők tehát azok az információk is, amelyek kategorikusan kijelentik, hogy a típus alkalmas lenne "a brit főváros központja és New York között" közvetlen üzemelésre.  Az A318-as csak erősen átalakított változatban, csak nyugat-keleti irányon képes átrepülni az óceánt.  A Concorde előnyeit pótolni persze így sem tudja az utasrepülés palettáján.
 
_
A Concorde-pótló járat All Business A318-asa

A digitális fly-by-wire
 
A fentiekben taglalt keveredést az analóg (FBW) és digitális (DFBW) rendszer közt részben az okozza, hogy mamár természetes a digitális technika, emiatt elmarad a szaknyelvben is a "D" a rövidítésből. Teljesen digitális FBW kormány- és repülésvezérlési tapasztalatok eleinte a haditechnikában voltak. Ennek jó oka volt, hiszen a teljesen megbízható digitális technika a 70-es 80-as évek határán is méregdrága volt. A hadiipar pedig akkoriban is húzóágazat volt a repülésben. A 80-as évek végére szolgálatba állított A320-as és a későbbi Airbus koncepció is több ponton hasonlít egyes harci gépek FBW alkalmazásaira.
Az ülések mellett, a kartámasz elé került a kormánybot (sidestick) a pilóták kényelmének növelésére. Többszörözött, hardveres és szoftveres tartalékokat is nyújtó számítástechnikai rendszerrel építették fel a repülésvezérlést.
A "karfában ülő" kis digitális kormánybot ergonómiai jelentősége némileg eltér a harcigépes alkalmazástól, hiszen egy utasgép kabinjában a hely több, és a pilótákra sem hatnak olyan durva gyorsulások, mint egy F16-oson, ahol félfekvő helyzetben a gázkarral és a sidestickkel a kezekben igen kemény manővereket kell végrehajtani. Természetsen a többszörözött FBW egységek és adatvonalak sem a harci sérülések esetére biztosítanak alternatívát, de a légiközlekedés biztonsága szempontjából legalább ennyire elengedhetetlen a kellően többszörözött kiépítés. Ugyanakkor az F16-oson megszűnt a mechanikus backup. A FBW Airbusokon a kézi kormánycsatornákon (dőlés, bólintás) szintén kezdettől megszűnt a mechanikus alternatíva. Mindez komoly súlymegtakarítást is jelentett, ugyanakkor egyfajta bizalmat is követel a pilótáktól, üzemeltetőktől, sőt, a tájékozottabb utasoktól is. 
A kormány és a kormánylapok közvetlen fizikai kapcsolatának megszüntetése - mint előző cikkünkben tárgyaltuk -  hidromechanikus kormányzású gépeken is gyakorlat. A rendszer vezérlési tartalékát viszont a tisztán FBW kormányzásban nem egy hidraulikus/mechanikus csatorna, hanem az FBW rendszer megfelelően kiépített többszörözése, redundanciák, tartalék üzemmódok beépítése, vagyis a hibatűrés, a hibás működésű elemek megkerülése adja. Természetesen a FBW vezérlési vonalak végén a végrehajtás biztonsági alternatívái is biztosítottak.
Az új FBW kormányzású repülőgépek hibatűrési mércéjét magasra tették, ugyanakkor komoly autonómiával is rendelkezik a rendszer. Az új Airbusok stabilitását megbízható, már nagy részben a pilóta akaratától függetlenül "intézkedő" számítógépes felügyeletre bízták. (Ez szintén nem ismeretlen a katonai repülésben, így az említett F16-oson sem, ahol az integrált repülésvezérlő rendszer tartja egyensúlyban kis sebességen szándékosan gyenge stabilitásra tervezett, ám fordulékony sárkányt. Szélsőséges esetben pedig akár repülésre teljesen alkalmatlan stabilitású gépek, lopakodók  válnak repülhetővé a mesterséges stabilizálással. Érdekes összefüggés még a FBW fejlődésében, hogy 70-es évek közepén gyártott F16-osokon pörgettyűs stabilizátorral és analóg rendszerrel irányították a gépet a Concorde-hoz hasonlóan, később már teljesen digitális vezérléssel oldották meg a mesterséges stabilitást is.)
A jóval "szelídebb"  utasgépeken a stabilitásvédelmi rendszer működése némileg más.  A szoftveres "felügyelet" a repülés folyamán nemcsak a repülőgép stabilitására, a sárkány kormányzással történő esetleges túlterhelésére  és az átesésközeli helyzetekre figyel, hanem a légköri turbulenciák hatásait is csillapítja. A leglátványosabb funkció az átesésvédelem, olyannyira, hogy bevezetésétől kezdve a kereskedelmi légibemutatók egyik sarokpontjává vált a kevéssel átesési sebesség felett, de stabilan manőverező Airbusok látványa.
A védelmi funkciókra később visszatérünk az AF447 szemszögéből is. Most lássuk általánosságban a technológia európai megvalósítását a kereskedelmi repülésben.

Mi az újdonság az Airbus pilótája számára?
A gépet felügyelő számítógépek mellett az említett sidestick a legszembetűnőbb érdekessége a FBW Airbusoknak. A korábban megszokott kormányokhoz képest éles váltást jelentett a kormányzás filozófiájában még a gyártón belül is. A korábbi szélestörzsű Airbusok  - hagyományos kormányszervekkel - nagyjából a más gyártóknál is megszokott rendszert adták a pilóták kezébe, vagyis a kitérítéssel arányos mozgások keletkeztek a kormánylapokon. A gép szerkezetének védelmét a kormánykitérítést nehezítő, változó erősségű hagyományos műterheléssel, illetve az oldalkormány esetében változó kitéréshatárolóval, oldották meg. A dinamikus kiegyensúlyozáshoz beállított trimmhelyzeteket a pilóta a kormányokon látta, érezte. (A trimmnek az AirFrance balesetben külön jelentősége van, erre visszatérünk).
Az A320-astól kezdve gyökeresen változott a helyzet. A fentebb említett szoftverek nemcsak védelmi határoló funkciókat látnak el, hanem minden végrehajtott kormánymozdulatot a számítógép dolgoz ki és "méretez".
Az Airbus sidestick koncepció lényege az, hogy a pilóta nem szögarányos kormánymozdulatokkal hozza létre a repülési pálya módosításának megfelelő kormánylapmozgást, tengelyszögváltozásokat és gyorsulásváltozást, hanem fordítva: szögelfordulási illetve gyorsulásvektor parancsokkal utasítja a gépet, amelynek vezérlése kidolgozza a tényleges kitérési szögeket. A gép a körülötte áramló levegőből vett jelekkel, és a saját helyzet- és gyorsulásérzékelőivel egyezteti a kapott parancsokat.
A magasságváltoztatást szemléltető ábrán jól látható, hogy a rendszer hogyan működik. A pilóta hátrabillenti semleges helyzetéből a sidesticket, ezzel a pozitív szögű bólintásparancs mellett az "engedélyzett" gyorsulást 1g főlé emeli. A gép emelkedő gyorsulásba kezd a kitérítés mértékéig. Ezután a pilóta elengedheti a sticket. A gép nem bólint vissza, míg ellenkező irányú parancsot nem kap, hanem stabilizálja azt az egyenes vonalú emelkedést, amit megkezdett. Ezt a viselkedést mesterségesen előálított semleges stabilitásnak nevezik. A referencia, amihez képest a kitéréseket kidolgozza normál repülés közben, a normál 1g nehézségi gyorsulás.
A trimm automatikusan beáll az emelkedéshez szükséges vezérsík állásra. A bot az elengedéskor visszatér a középhelyzetbe és a manőver ezzel "elkészült". Ha pedig hirtelen túlhúzásba vinnénk a gépet, a számítógép korlátozza a mozdulataink eredményét, függetlenül attól, hogy ütközésig húztuk-e a botot. Ez az állásszög és a load factor védelem, amelyről a következő bekezdésben lesz szó részletesen.

Kormányhatárolások, védelmi funkciók és a sidestick
 
Ezen a ponton ki kell térnünk arra, hogy ha a sidestick mozgatását "koppanástól koppanásig" nem korlátozza semmi, akkor hogyan lehet nagy sebességeknél, vagy egyéb határhelyzeteknél összeszokni a repülőgéppel. Nos mint már az eddigiekből sejthető természetesen a FBW felépítésében és a védelmi algoritmusokban kell keresnünk a megoldást. A biztonságos repülési paraméterekkel behatárolt üzemmódokat a szaknyelv "envelope"-nak nevezi, amit borítéknak, a magyar műszaki nyelv számára talán kevésbé idegenül hangzóan keretnek, tartománynak fodíthatunk. E tartományok védelme az envelope protection. Ez a gyártóknál eltérően néz ki, de mi most természetesen az Airbus szemszögéből vizsgáljuk a kérdést.
Az Airbus sidestick nem rendelkezik visszaható műterheléssel vagy a B777-esen megszokott ún. backdrive-val (visszaható mozgatórendszerrel) sem. Ennek viszonylag egyszerű oka van. Miután az airbus kormánybottal nem arányos kormányszögeket határozunk meg, hanem utasításvektorokat, melyek változó kitérést adnak a kormánylapokra, emiatt az arányos kitérés-visszacsatolás (backdrive) logikai ütközést okozna. Egyszerűbben fogalmazva keveredne a vektorparancs a pillanatnyi kormánybot-kitéréssel. A védelem ennek megfelelően nem a stick mozgását határolja, hanem azt, hogy meddig lehet a gépet dönteni, bólintani, siklásban gyorsítani. Előbbiek esetében a kormánylapok egyszerűen nem mozdulnak tovább, hiába döntöttük ötközésig a botot. Utóbbi esetben a stick állásától függetlenül felhúzza a gépet a rendszer a biztonságos tartományig. Összesen tehát a kormányvezérlést tekintve öt alapvető védelmi logika működik együtt egy teljesen üzemképes Airbus FBW rendszerén; (Normal law): - Dőlésvédelem - Sebességtúllépés védelem - Terhelési többes (load factor) védelem - Bólintási szög védelem - Állásszögvédelem
Dőlési karakterisztika 33°-ig biztosított bólintástartással


Mindebből több sajátosság is keletkezik. 
Általában egy repülőgép szárnya egyszerű bedöntéskor oldalazni kezd, ezzel együtt magasságot is veszít, vagyis "becsúszik a fordulóba". Ezt kiküszöbölendő íven és magasságon kell tartani más kormányok belépésével (koordinált forduló).. Az Airbus a fenti dőlési karakterisztika mentén magától végzi a forduló koordinálását a stick döntési parancsára reagálva.. Figyelembe véve, hogy normál forgalmi körülmények közt a bedöntés ritkán kerül a 15-33° közti tartományba, az automatikusan koordinált forduló elengedett stick esetén csak eddig a határig marad fenn. Efeletti kitérítés kézzel, dőlés és felhúzás paranccsal tartható meg legfeljebb 67 fokig.
Felhajtóerő szükséglet és terhelési többes a forduló bedöntés függvényében

A terhelési többes vagy tényező egy mértékegység nélküli viszonyszám de szokás g-ben is kifejezni, mint gyorsulást. Ebben az értelemben a gravitáció és a centrifugális erő által létrehozott eredő érték. Koordinált fordulóban a dőlésszög cosinusával egyenlő. A dőlést és a terhelést is figyeli a védelmi rendszer.
A 67°-os határ nem önkényesen felvett érték. Itt a gép átlépné a sárkányra ható terhelés 2,5g-s limitjét. Ezt a rendszer nem engedi meg, sőt, elengedett stick esetében visszaveszi a bedöntést 33 fokig. Alacsony sebesség és nagy állásszög (AoA) esetén a dőlésvédelem már 45fokos döntésnél aktív.
Hasonló módon dolgozik, a sebességhatárolás automatika (HSP- high speed protection). A repülőgép a maximális tervezett sebesség/Mach szám közelében fokozott kormányzási nehézségeknek és szilárdsági problémáknak van kitéve a megnövekedett légerők miatt. Ugyanakkor a legnagyobb üzemi sebesség (VMO/MMO) és a maximális tervezett sebesség (maximium design speed) közti tartományban a gép még különösebb gond nélkül kivehető a túl gyors siklásból. Ezt automatikusan végzi a repülőgép.
Sebességtúllépés védelem (HSP) és a sebességkijelző különböző stick állásokban
A HSP automatika pozitív G (emelkedés) utasítást ad a bólintáscsatornán. A különbség itt is abban van, hogy épp milyen stick pozíciót használ a pilóta. Ha a gépet bólintással siklásba vitte, majd elengedte a botot, a repülőgép már a legnagyobb üzemi (VMO/MMO) sebességhatár kisebb átlépése után visszavesz a bólintásból és a biztonságos tartományba íveli fel a repülési pályát, lelassítva ezzel a gépet.
Teljesen előretolt stick esetében jelentősen átlép a VMO/MMO érték fölé, ahol később ugyan, de szintén "kiveszi" a gépet a pilóta kezéből a HSP. Felíveléssel a sebességet VMO +16 csomó vagy MMO +0.04Mach sebességre állítja és visszaveszi a bólintásparancs értékét nullára a stick állásától függetlenül. Ez nem stabilizált állapot, a stick visszaengedésével visszatér a gép az előirt sebességtartományra.
Load factor ("terhelési többes") védelem
A load factor védelem leginkább elkerülő manőverek, veszélyes földközelségi helyzetek, felhúzások esetén jut szerephez. Az Airbus "tiszta" konfigurációban 2,5g, míg kiengedett fékszárny esetén 2,0g manőverezési csúcsterheléssel számol a kereskedelmi gépeken. A védelmi rendszer kétféle lehetőséget ad a pilóta kezébe. Egyrészt káros túlhúzás esetén a gépet védi, másrészt lehetőséget ad arra, hogy szándékosan ezen a határon repüljön a személyzet, ha szükséges. A repülőgép teljesen hátrahúzott kormány mellett kezdetben a maximális g-terhelés szerinti íven kezd emelkedni, majd ha a pilóta továbbra is tartja a kormányhelyzetet, a gép védelmi rendszere állásszögvédelem üzemmódban folytatja a gép irányítását. Ilyen értelemben tehát a két védelem kiegészíti egymást.  

Bólintási szög védelem

A bólintás a repülőgép oldalnézetből látható, horizonttal, mint optikai referenciával bezárt tengelyszög (nem keverendő a következő bekezdésben tárgyalt állásszöggel). - A túl magas pozitív bólintási szög (nose up) gyors mozgási energia vesztést, - a  túl a magas negatív bólintási szög (nose down) veszélyes pályamenti gyorsulást, vagyis mozgási energia növekedést okozhat, így ezt a szöget a repülőgép védelmi rendszere repülés közben +30 és -15° közé korlátozza . A védelmi rendszer együttműködik a már tárgyalt sebességtúllépés-védelem (HSP) és az állásszögvédelem rendszerrel, a mozgási energia lecsökkenésére figyelmeztető rendszerrel és a hosszú típusokon a tailstrike (farokleütődés) védelemmel is.  

Állásszögvédelem

Az állásszög (AoA - Angle of Attack) relatív aerodinamikai szög. A szárnyprofil levegőhőz képesti haladási irányához viszonyított érték. Nincs közvetlen köze a bólintási szöghöz (pitch), amelyet a horizonthoz viszonyítunk. Az állásszög növelésével a felhajtóerő és a légellenállás is növekszik, majd a kritikus állásszög elérése után a felhajtóerő meredeken csökkenni kezd. Ennek oka, hogy a szárny felső felületén az alakkövetést biztosító (lamináris) áramlás leválik, helyét turbulens áramlás foglalja el, lerontva az alacsony légnyomású teret, és a szárny feletti légtömeg irányított mozgását .  
Az állásszögvédelmi rendszer ezt a jelenséget hivatott kivédeni. különösen fontos ez bizonyos vészhelyzetek elhárítása közben. A pilóta gyakorlatilag teljesen hátrahúzhatja a sidesticket, a gép ekkor is minimalizálja az átesés lehetőségét. Különböző üzemmódokban a védelem  a vízszintes vezérsík vezérlést, a kormánykitérést , a féklapok (speedbrake) helyzetét és a tolóerőt is befolyásolja. A baleset szempontjából különösen fontos megjegyeznünk, hogy ez a funkció csak működő sebességadók, a szoftver számára értelmezhető állásszögtartomány, illetve normál FBW repülésvezérlési üzemmód (Normal Law) esetén aktív. Bármely feltétel hiányában a védelem megszűnik. Erről a konkrét baleseti rögzítő elemzésben részletesen szót ejtünk. majd. Szintén fontos, hogy a hagyományos állásszögjelzést a gyártó megszüntette a gépeken. A kritikus értékekre is csak a sebességskála csíkozása utal, ám ez egy indirekt jelzés és többcsatornás sebességjel hiba vagy tűrésen kívüli állásszög esetén nem működik.
A felhajtóerő tényező (CL) állásszög (alpha) és a védelmi határértékek összefüggése, ezek kijelzése a sebességskála mellett; - Az Alpha Max szög teljesen hátrahúzott bot, és lekapcsolt tolóerőautomatika mellett érhető el, ám ha kell ezt a gép enyhén liftező süllyedéssel tartja, nem engedve a sebességet "elkopni". Az Alpha Prot az az érték, ahol a vezérsík automatika nem engedi továbbtrimmelni a gépet. A bot visszaengedett, semleges helyzetében ez az állásszög tartható. 
A felső ábrához képest új elem az Alpha Floor szaggatott határvonal. Ez az az érték, ahol viszont a tolóerőautomata avatkozik be a túlhúzás, illetve a sebességvesztés lehetőségét korlátozva.
Tolóerővezérlés  - újabb szakítás a hagyományokkal
Fontos elem, hogy a tolóerőmódosításokat kiválasztott tartományokon belül a rendszer automatikusan végzi, de nem mozgatja a gázkart (ezt autothrust rendszernek hívják). Ez újabb eltérés a korábbi pilótafülkéktől, ahol a tolóerőautomata (autothrottle) a gázkarmozgással is indikált beavatkozásokkal dolgozott. A hajózók tehát ezeken a gépeken nincsenek hozzászokva az automatika által létrehozott gázkarmozgáshoz sem, illetve nem tűnik fel a gázkaron, ha egy hiba folytán nem működik a rendszer. Minden ilyen jellegű probléma külön jelzésként látható, vagy a paraméterjelzésekből olvasható ki.
Az érzékelhető kapcsolat a kormányok, kezelőszervek és a pilóta közt valójában ezen a ponton változott nagyot, lévén sem a gázkar, sem a stick "nem dolgozik vissza a pilóta kezére". Az A320-tól kezdődő európai  koncepció ezen a ponton úgy tűnik, végleg szakít a hagyományokkal.
Érdekessége az egész filozófiának, hogy - bár az egyik megkérdezett pilóta szerint a gép egy "repülőgép mérnököktől mérnököknek", valójában a tervezési szakaszban pilótákat is bevontak az új pilótafülke kialakításába. Emellett még a Porsche szakembereit is felkérték az ergonómiai koncepció kidolgozásába. 
A helyzetet némileg bonyolítja, hogy a gépek technikai probléma esetén átlépnek, vagy átléptethetők alacsonyabb szintű védelmi szintre, úgynevezett alternate módokba, és direkt módba is. Utóbbinál viszont a kormánykitérés arányos lesz a kormánylapokra kimenő parancsokkal - továbbra is taktilis visszajelzések nélkül.
Alapvetően az A320-as technológiájából, kezelőfelületéből, és az A300 család sárkányaiból állt össze az A380-as kivételével az összes ma repülő Airbus. Ez gazdaságos, és a pilótaképzés szempontjából is konzisztens megoldás.
Ezen a ponton azonnal felvetődik a pilóta - repülőgép csatolófelület (humán interfész) kialakítása, ebből következően pedig a pilóták típusképzési koncepciójának meghatározása. A nagy horderejű projekt két legvitatottabb pontja ez.
A sorozat következő részében erről bővebben írunk.

 Creative Commons Licenc
ÖSSZES ÍRÁSUNK AZ AF-447-ES JÁRATRÓL >>

2011/09/09

Boeing 737 MAX : Új technika, történelmi múlt - teljes áttekintés



A Boeing 737-es - bár a paletta legkisebb tagja, mégis egész kis legendát írt a közforgalmi repülés emlékkönyvébe. A jetkorszak legnagyobb példányszámú kereskedelmi gépe a maga 7000 legyártott illetve eddig rendelt 9000 példányával. Kiváló megbízhatósági adatok, és repült órák megszámlálhatatlan milliói. Idézet korábbi cikkünkből: "Pillanatnyilag  kb. 4200 darab van szolgálatban, átlagosan 1250 db repül minden pillanatban. Két és fél másodpercenként indul, vagy száll le a világon egy 737-es. A típusnak több mint 300 millió repült órája van. ...... 1000 tervezett járatból 994 indul el műszaki problémák miatti csúszás nélkül."

Ám a szép számok a repülőiparban sem elegendőek egy modell tartós piacképességéhez. Nagyon röviden összefoglaljuk, miben változott - fejlődött eddig, és miben fog változni a típus, mitől reméli a gyártó nemcsak a piaci pozíciók megőrzését, hanem azok javítását is.


A Boeing 737-es története  - Az első változatok

A Boeing a 60-as évek közepén egy rövidebb utakra használható kisebb utasgép tervein kezdett dolgozni. A 737-es felépítése nem volt megszokott, lévén a kor divatja szerint a kisebb utasgépek többnyire T vezérsíkos sárkánnyal, törzsre szerelt hajtóművel készültek. Ennek egyik előnye, hogy a gép lehet alsószárnyas - hogy a szárnyközéprész ne az utastérbe lógjon be felülről - mégis lehet alacsony, lehet akár saját lépcsővel szerelni, rövidek lehetnek a futószárak. A jetek hajtóművét közelebb lehetett szerelni a törzshöz a légcsavarosoknál, hisz az átmérő kisebb. Magába a szárnyba is építettek hajtóműveket akkoriban, ám ez bonyolulttá tette a főtartó kidolgozását a hajtóműszerelést, és a rezonancia is egyenesen az utastérbe vezetődött.
Hátsó hajtóművekkel viszont a farok súlya megnövekszik a hajtóművek és a T vezérsík miatt is. Ezt a súlyt a szárny-törzs átmenet és maga a szárny viseli, tehát ezeket a részeket is erősíteni kell a farokrész mellett. Ugyanakkor általában a használható utastér is rövidül a hajtómű ilyen elhelyezésével. A Boeing már akkor is a hatékonyságot tekintette tervezési vezérfonalnak, megoldás kellett tehát a szárnyon történő egyszerű elhelyezésre.

Boeing 707 függesztőpilon

A B707-esen ugyan már függesztett hajtóművek voltak, ami jobb súlyelosztást ad, viszont egy kisebb, alacsony gépen ez nem jöhetett szóba. Joe Sutter, a későbbi Jumbo megálmodója úgy döntött: egyszerűbb, ha elhagyják a hagyományos függesztőpilont, és közvetlenül a szárny alá kerül az akkoriban elterjedt JT8-as hajtómű.

A 737-es első generációs hajtóművének felfüggesztése

További egyszerűsítés volt a főfutó akna ajtóinak elhagyása. Ehelyett futószáron fixen rögzített és minimálisan mechanizált takarólemezek vannak, a kerekek pedig benti helyzetben belesimulnak a gép körvonalába. Ezzel ismét helyet és súlyt takarítottak meg, hiszen nincsenek ajtónyitó munkahengerek, sorrendvezérlő szelepek...stb.

Pucér kerekek, mint a világháborúban: egyszerű, könnyű és a mai napig meg is maradt

Ez a pár alapötlet és a 727-esen már bevált törzs-szekciók adaptálása, valamint a zömök, de kényelmes törzs határozta meg aztán a 737-es formáját (a magyar szakzsargon később "Kisdisznó"-ként emlegette a rövid 737-est). A gépen 6db ülés fért egy sorban 3+3 elrendezésben, magasabb osztályokon pedig 3+2 vagy 2+2 székezést alkalmaztak. Az egész repülőgép teljes hossza azonban még a Lufthansa által igényelt kis törzshosszabbítással együtt is alig lépte túl a 30 métert. Ebből lett végül a 737-200, majd a kisebb módosításokkal továbbfejlesztett 737-200 ADV melyekből több mint 1100db készült.

Az első komoly revízió bő 10 év gyártás után 1979-ben kezdődött. Ekkor már a második olajválság is figyelmeztette az iparágat: prioritást kell élvezzen a tüzelőanyag-takarékosabb gépek fejlesztése. Európa pedig már dolgozott a későbbi A320 előkészítő programjain. Az első új modell, a 737-300-as terveinek bejelentése 1980-ban történt. Ezután a 707-esek és DC-8-asok hajtóműcseréjéhez már rendelkezésre álló  CFM-56 csökkentett átmérőjű verzióját kapta meg a gép. Ez a hajtómű lett aztán a teljes 737 Classic család lelke. A talajtól való távolság (ground clearence) megőrzése érdekében a szívótorok alulról lapított, ún. "hörcsögpofa" formát kapott, a hajtóművek összes segédberendezését oldalra kellett helyezni, hogy alul kellően lapos maradhasson a burkolat. A korábbi külső sugárfordítók helyett pedig hátracsúszó, körkörös reverz került a hajtóműre. Szintén a ground clearence megtartását szolgálta, hogy a hajtóművet a szárnyak elé tolták de olyan módon, hogy a tartószerkezet egy magasságban maradt a szárnnyal. A hajtóművek +5 fokos tengelyszögben lettek beépítve.
737-300 nagyobb hajtómű, egyenes pilon, nagy áramlásterelő lap jobboldalon. Utóbbi a hajtóműgondola zavaró hatását csökkenti nagy állásszögeknél a szárny feletti áramlás számára

Minderre azért volt szükség, mert a nagy kétáramúsági fokú hajtóművek ventillátorfokozata és külső átmérője lényegesen nagyobb, mint a régi hajtóműveké, tehát a szárny és a föld közti helyen úgy kellett elhelyezni a meghajtást, hogy a hajtómű ne kerüljön túl közel a földhöz. Ebben az időben már a Boeing más típusain is inkább a közel vízszintesen előrenyúló megoldást alkalmazta, a később tervezett új típusokon nem is találkozunk többé a 707-eshez, 747-eshez hasonlóan lógatott hajtóművekkel, legfeljebb épp a belépőél síkja alá nyúlik a hajtóműpilon. A megoldás közelebb emeli a tolóerő támadáspontját a súlyponthoz, csökkenti a csavarónyomatékot nagy tolóerőnél is, ami szintén előnyös:

Boeing 767 hajtóműelhelyezés
Több változtatás is történt a 737-es sárkányán. A törzset továbbnyújtották mintegy 3m-rel. Változtattak a vezérsíkhosszon, kompozit kormányfelületeket, könnyebb ötvözeteket, és aerodinamikai módosításokat alkalmaztak. Többek között megnnyújtották a profilt úgy, hogy ezzel növelték a kritikus Mach számot, javították a gép nagysebességű tulajdonságait. Emellett változtattak a profil belépőrészén is, ami a kis sebességű tulajdonságokat javította...stb.
Lényeges változások történtek a pilótafülkében is. Négy CRT-képernyős műszerfal (EFIS) integrált digitális repülésvezérlő rendszer (DFCS és FMS), tolóerőautomata...stb. Az első 737-300-as 1984 elején repült először.
A 80-as évek végéig további változatok jelentek meg. A 737-400 már 174 fős befogadóképességgel, 36,5 méteres hosszal, ennek megfelelően farokcsúszóval jött ki.
A hajdani 200-as méretével, de annál lényegesen gazdaságosabb paraméterekkel, nagyobb terhelhetőséggel jelent meg a 737-500. Ennek ellenére a rövidítés miatt sosem lehetett olyan gazdaságos, mint a hosszabb verziók. Ez az eladásokon is látható volt.

A második revízió

A Boeing 737-esek legnagyobb vásárlója a 3000-nél is több napi járatot üzemeltető Southwest Airlines diszkontcég (jelenleg 560db 737-esből álló flottával).
Az ő felkérésükre 1993-ban indította el a gyár a következő, máig legsikeresebb generációt (Next Generation) akkor még 737-300X munkanéven.  1997-ben száll fel az első gép akkor már 737-700NG néven, miközben folyik a 600-as és a 800-as építése is. Az első 800-as még ebben az évben, a 600-as '98-ban repül. Megkezdődik az FAA és JAA típusengedélyek kiadása is (Ekkor még nem az EASA illetékes Európában) 1999-ben az NG család megkapja a hosszútávú desztinációkhoz szükséges ETOPS (Extended Operations) engedélyt.

Az NG-változatok nagyon komoly fejlesztéseket hoztak a piacra gazdaságosság tekintetében is. Ebbe gyártási hatékonyság is beleértendő: az új típusok egyharmaddal kevesebb alkotóelemből állnak. Gyorsabban készülnek az elődöknél, a gyártás pedig egy speciális futószalagon történik.
Emellett számos kedvező változás történik a típuson: kisebb fogyasztás, tovább növelt sebesség (0.78Mach), 40.000láb feletti csúcsmagasság, kedvezőbb kissebességű viselkedés, nagyobb tüzelőanyag kapacitás, új, hosszabb, karcsúbb szárnyak, ismét új profil, hatképernyős műszerfal (igazi "glass-cockpit") könnyű, LCD kijelzőkkel. EDFCS-730 néven továbbfejlesztett digitális repülésvezérlés - igény szerint különösen rossz látási viszonyok melletti (CAT IIIb) megközelítésre való felkészítéssel.  A pilóták műszerrepülés közbeni munkáját segíti a HUD, (head-up display), lehajtható átlátszó kijelző az elsődleges repülési és pályamegközelítési információkkal. 




GPS alapú megközelítésre is alkalmassá teszik a típuscsaládot, emellett a megjelenik az úgynevezett Vertical Situation Display (VSD) is.

A  VSD-vel kiegészített képernyő

Az újabb fejlesztésű CFM56-7 hajtóművekkel ismét előkerül a gondola és a föld közti "ground clearence" távolság problémája.  Az új hajtómű beépítési szögét kissé továbbemelik, és így teszik fel a módosított, de továbbra is közel vízszintesen előrenyúló pilonra. A ground clearence részben a talajon lévő szennyeződések beszívása miatt, de leginkább mégis azért lényeges, mert turbulens, oldalszeles időben előfordulhat hogy a gépet billenteni, csúsztatni kell a pályatengely megtartásához.

737-700NG - Ilyen mozdulatokra is számítani kell (Jason Whitebird fotója)
Fontos változás, hogy az eredetileg Business változatokhoz (BBJ) kínált úgynevezett blended, vagyis hajlított wingleteket végül szalagon szerelik az NG 700-800 majd a 900-as sorozat szárnyvégeire is opcióként. A Boeingtól eredetileg független cég által kifejlesztett légellenállás csökkentő kiegészítő annyira jól beválik, hogy nemcsak 737-es upgrade-csomagként árulják, de kidolgozzák a 757-767 páros szárnyvégeire is.  

Egy 737BBJ (a Global Jet Austria üzleti gépe )


A 700-as és 800-as változatokra nagy az érdeklődés, ám megintcsak a legkisebb, 600-as típus mérsékeltebb siker. Ebben tényező a korábbi 737MAX cikkben is említett regionális piac 100 férőhely körüli típusainak megkezdődő térhódítása, valamit pl. az is, hogy a repülőgép sárkányfelépítése hosszabb törzs és nagyobb felszállótömeg esetén jobb felületi terhelést, gazdaságosabb repülést tesz lehetővé. A befogadóképességhez képest ugyanakkor relatíve kisebb a homlokfelület így a légellenállás is a hosszú gépeken. Az egész légiipar a nyújtott, karcsú gépek felé halad - kevés kivétellel... Valójában modern regionális gépektől az A330/340-600, 767-400, 747-8 változatokig ezt a vonalat követik a tervezők.


B737-900
A 737-esnek is ez a tendencia adja a következő változat létjogosultságát, ez pedig a 737-900NG. A nagyobb terhelhetőségű, hosszútávú repülésekre fejlesztett változat a 900ER immár kétosztályos változatban 180, illetve két plusz vészkijárat esetén engedélyezett charter székezéssel 200-220 fővel kb. 6000km távolságot képes repülni 0.79 Mach gazdaságos utazósebességnél. A gépet az NG-ken alkalmazott hajtóműcsalád továbbfejlesztett, CFM56-7BE változata hajtja. Alacsony utaskilométer költséggel, kiváló "távolsági busszá" válik pl. chartervonalakon. A 900-as méret átkerült a MAX programba is, ahol többek közt a kiöregedő B757-esek leváltásában is szerepet kaphat.

A harmadik revízió:

Az időközben bekövetkezett válság, az utazási kedv átmeneti megtorpanása és az üzemanyagárak változása kivárásra késztette a légitársaságokat. Sokan elodázták a vásárlásokat, várták, hogy a két repülőgépgyártó nagyvállalat valamelyike új típust jelentsen be számottevő tüzelőanyag-megtakarítással. 
Eközben a Boeingot a 787-esen bevezetett új technológiák körül jelentkező problémák több nehéz feladat elé állították. Egyrészt a késések lekötötték a fejlesztőkapacitás  egy részét, nem kevés pénzt is elvittek, másrészt a gyártókapacitást is úgy kellett tervezni, hogy az óriási érdeklődés kielégíthető legyen a késések behozásával együtt. A  B777-es viszont pillanatnyilag olyan termék, amelyben jó fejlesztési potenciálok mellett még nagy eladható darabszámok vannak. E fejlesztésekkel jól kihasználható a rivális A350-es típusváltozat késésével keletkező piaci rés is. Emellett sorban áll 2000db-nyi 737-es megrendelés, amit gyorsított ütemben tejlesteni kell.  A 787-esbe fektetett pénz akkor térül meg gyorsabban, ha a többi új típuson megjelenik valamilyen hozadéka a fejlesztésnek. Ez persze részben meg is történik a 747-esen, a 777-esen és némileg a MAX programban is, de az utóbbi helyett szívesen látott volna a piac egy teljesen új gépet is, amelynek esetleges indításáról több hír is felreppent a Boeing környékéről.
Az Airbus ráadásul lépéskényszerbe hozta a Boeingot az A320 NEO bejelentésével. Az Airbus sárkánya viszont az elmúlt három évtizedben nem nagyon változott. 
Már 2006-tól folytak ugyan kísérletek különböző wingletekkel, ám ezek önmagukban csak pár százaléknyi javulást hoztak. Az újgenerációs CFMI - LEAP-X és a Pratt&Whitney GTF hajtóművek megjelenése viszont hirtelen kiváló lehetőséget adott a komolyabb eredményekre nagyobb beruházás nélkül. Végül a hajtóművek leváltása, a wingletek és a szárnytő borítás finomítása együttesen kb 15% fogyasztáscsökkenést jelent az Airbus szerint.
Erre óriási rendelésekkel reagált a piac pl. az idei Paris Airshow-n is.

737MAX

A Boeing nagyfelhasználó partnereivel szerződéseket előkészítve konzultált a frissítés, vagy az új típus kérdésében. Végül szintén a hajtóműfrissítésen alapuló fejlesztés mellett döntött. A légitársaságok ilyen irányú nyomása ugyan nem feltétlenül hat jótékonyan a technikai evolúció sebességére, ám az üzemanyagtakarékosság mellett számos egyéb ponton ad lehetőséget a takarékoskodásra. Egyrészt sem az Airbus, sem a Boeing vásárlói esetében nem igényel számottevő lépéseket a képzési, és átképzési programban, hiszen a gépek pilóta szemszögből nem sokban fognak különbözni a mostaniaktól. Másrészt a kiszolgálóeszközök, alkatrészpark, üzemeltetői és műszaki képzés szempontjából is ez tűnik a mai gazdasági helyzetben ésszerűbb döntésnek.

Ettől függetlenül a 737MAX sem csak a LEAP-X hajtóművek révén jelent előrelépést. Tüzelőanyag-fogyasztásban 4, üzemeltetési költségekben összesen 7%-kal "ígér alá" a típuscsalád a NEO konkurenciának. Az NG sárkányhoz képest viszont szintén tartalmaz a program kisebb aerodinamikai és szerkezeti finomításokat. A farokrész módosul, karcsúsodik a törzsvég, karcsúbb, áramvonalasabb burkolatokat ("csónakokat") kapnak a fékszárny mechanikái. Az újabb hajtómű mégtöbb helyet igényel, így a pilont a 787-eshez hasonlóan úgy alakították ki, hogy enyhén felfelé nyúlik.
Karcsúbb fékszárnyburkolatok, felfelé induló függesztőpilon

787-es pilonok

Emellett megszűnik a korábbi 700NG-n látható megerősített illesztőkeret az utolsó előtti utasablak mellett, ami tömegcsökkentést jelent.

 

737-700NG
737MAX-7
  
A hajtómű zajtalanabb és örvénymentesebb külső légáramát biztosító fogazott kilépőélről már írtunk előző cikkünkben, ahogyan arról is, hogy a korábban opcióként kínált Sky Interior sztenderd utastérkivitel lesz a típuson.
Utóbbi a 787-es beltérhez kissé hasonlító dizájnon kívül nagyobb kézipoggyász-tartókat a variálható, LED technológiára épülő világítást is tartalmazza, ami az energiafelhasználásra, súlyra és a karbantartásra is jótékonyan hat.

Emellett jelezte a gyártó, hogy helyenként fly-by-wire elemek is kerülnek a gépre ami elsősorban szintén a súlycsökkentés irányában hat. Szinte kizárt, hogy ez nagymértékű beavatkozást jelentene a repülőgép jól bevált vezérlési rendszerébe. A fly-by-wire lényege, hogy a parancs elektromos-elektronikus jelek formájában, könnyű vezetékeken jut el a végrehajtó elemekig, így súlyt lehet megtakarítani a hidraulikus táp és vezérlővonalakon, mechanikus vezérlőelemek mennyiségén egyszerűbb rendszereken is, pl. féklapok, csűrőspoilerek, flaperonok...stb működtetésénél.


Ezzel szemben a 777-es vagy 787-eshez hasonló, teljesen FBW vezérlésre való átalakítás nagy fejlesztési beruházást igényelne, teljesen új képzési hátteret a pilóták és az üzemeltetők számára,  hosszadalmas fejlesztési munkát kívánna, ugyanakkor elhúzódnának a típus légialkalmassági tesztjei is. Ez így együtt valóban csak egy teljesen új típus esetében érné meg.


Az idő pedig sürget, lévén az A320 NEO program pillanatnyilag előrébb tart, az átadások kettő, de a legjobb esetben is legalább egy évvel korábban fognak megkezdődni, mint a Boeingnál.





Creative Commons Licenc
Trikó Nick