A következő címkéjű bejegyzések mutatása: autopilot. Összes bejegyzés megjelenítése
A következő címkéjű bejegyzések mutatása: autopilot. Összes bejegyzés megjelenítése

2012/07/12

Air France baleset - A zárójelentés számon kér (AF447)

Mint az várható volt, igazán sorsdöntő ténybeli újdonság nem került már elő a balesetről zárójelentéssel, azonban néhány helyen új összefüggések és a korábbinál kézzelfoghatóbb információk következtetések jelentek meg, emellett a kísérő dokumentáció is részletesebb. Korábbi elemző anyagaink helytállóak is maradtak, igaz a teljes jelentés egyértelműbb magyarázatokra ad módot.  Terjedelmi okokból ezeket a már futó elemző sorozatunk részeként vesszük sorra, most csak a lényegi kérdésekre, illetve a konzekvenciákat tartalmazó vizsgálati anyagrészre, ajánlásokra térünk ki.

Ezekben a Bizottság a baleset közvetlen vonatkozásaitól egészen a katasztrófaelhárítási illetve mentési koordináció felülvizsgálatáig megy, pontosabban ezzel is kezdi az ajánlásokat.

A folytatásban a légiforgalom irányítás szenegáli és brazil infrastruktúrájának fejlesztését javasolja a BEA. Annak ellenére, hogy a rádiókommunikáció a baleseti térségben korlátozott volt, a egy ADS-C illetve CPDLC (Controller-Pilot Data Link Communication) kapcsolat lehetővé tette volna, hogy a DAKAR irányítás azonnali figyelmeztetést kapjon a a repülőgép magasságvesztéséről. (Tekintve a körülményeket, mindez valójában "csak" a kutatás gyorsaságában segíthetett volna, hiszen a becsapódás helye és intenzitása az életmentést jószerével kizárta. A CPDLC vészjelzések, pozícióadatok, irányítási utasítások és engedélyek, valamint egyéb szöveges üzenetek forgalmazására is alkalmas.)

A megtalált baleseti rögzítő a laborban

Titanic szindróma?

A további részben az oktatás és a szimulátorképzés fejlesztését javasolja a Bizottság, ami az eddig nyilvánosságra került anyagokból is előre sejthető volt. Mint azt korábban is részleteztük, az Airbus maga is változtatott pl. a nagy magasságú átesés kezelésének oktatott módszerén, de ezen felül több ponton is változtatásokat javasol a jelentés, vagyis sokkal átfogóbban  foglalkozik a kérdéssel. A Bizottság a múlt évi ajánlásait megerősítve az egyensúlyvesztéses helyzet manuális kezelési ismereteit hiányolja a pilóták részéről, leginkább a bólintási tengely mentén. Mint azt korábban is írtuk, az integrált automatikus védelmi rendszerbe vetett bizalom miatt az Airbus egyszerűen nem tartotta fontosnak a kérdést. A problémát súlyosbítja, hogy a személyzet együttműködése nem volt teljesen szabályszerű. Vezényszavak, eljárások megindítása nem hangzott el. Az átesés a figyelmeztető jelzés ellenére nem tudatosult a személyzetben, de a hibás sebességadatok esetére szóló eljárás bemondása is elmaradt. Ismét ki kell emelnünk azt a tényt is, hogy az Airbus az állásszögműszert is lehagyta a gépről.. 

Az állásszögjelző egy korai műszaki oktatóanyagban
A valóságban csak a helyét látjuk az állásszög műszereknek a PFD monitorok mellett. A kép közepén lévő ECAM üzenetzónát azonban a BEA nem találta elégségesnek a gép rendszereiben bekövetkező események logikai követésére, így pl a pitotcső hibák tudatosítására sem.


A sebesség, bólintás és süllyedésadatok ugyan elárulták a helyzetet, de a személyzet ezt sem vette figyelembe. Nem tudni, mi járt a fejekben, de valószínűleg képzésük és típustapasztalataik alapján nem hitték el, ami történt. Később a pilótaképzésről szóló cikkben részletesen írunk erről, de míg a fly-by-wire Airbusok oktatóanyaga csak érintőlegesen és kizárólag az átesésközeli helyzeteket tárgyalja, addig a az ugyancsak automatikus védelemmel ellátott FBW vezérlésű gépein a Boeing kb. hatszoros terjedelemben tárgyalja a témakört,  a megelőző jelenségek mellett kitér a teljesen kialakult átesésre is, ezen belül annak szélsőséges módjára, valamint annak kezelésére is. Erről nemcsak a blogon írtunk, de a múlt évben még hellyel-közzel működő Index szaktopikon kötetlen stílusban ugyan, de jómagam fordítottam egy érdeklődő számára az Airbus és a B777-es vonatkozó gyári tananyagát. 

Itt csak a Boeing 777 anyag legfontosabb kulcsmondatait vesszük át:
"Egy repülőgép bármilyen helyzetben áteshet (orr fent, lent, vagy nagy dőlésnél), illetve bármilyen sebességnél - fordulóban, gyorsulásos átesésben (accelerated stall). Nem mindig érezhető ösztönösen, hogy a gép átesésben van.
Az alábbi esetekben (és ezek komnbinációjában) lehet átesésben a gép:
- rázkódás, akár erős is lehet
- bólintás hatástalan
- dőlés nem irányítható
- süllyedés nem megállítható

Ezeket a jelenségeket állandó átesésjelzés kíséri általában. Ez nem keverendő össze az átesésközeli helyzetben megszólaló átesésjelzéssel. Az átesésközeli helyzet egy kontrollált manőver. Az átesés egy konktrollálatlan de helyrehozható állapot.

Figyelem: Bármikor teljesen átesik a gép, a robotot és a tolóerőautomatát le kell oldani. "
A fordítás bővebben itt olvasható: forum.index.hu

A fentihez hasonló anyag az FBW Airbusokon egyáltalán nem szerepelt.

Bár természetesen ilyen jellegű összehasonlítás a jelentésben nincs, a legfontosabb szakmai kérdőjelek mégis itt vannak.  Ahogyan a Titanic is csak "bizonyos feltételek közt" volt elsüllyeszthetetlen hajó, úgy nincs semmilyen tökéletes átesésvédelemmel ellátott utasgép sem. 

Baj van a digitális fly by wire-rel ?

Ezt így semmiképp nem jelenthetjük ki. A probléma - mint korábbi cikkeinkben jeleztük - az alkalmazás filozófiája, beleértve a pilóták felkészítését a géppel való együttműködésre és viszont. A Az Airbus ugyan korábban lépett a FBW digitalizáció útjára, de úgy tűnik, el is bízta magát. Konkrét előadásokon hangzott el Airbus illetékesektől (főpilóta), hogy a gépek pilótáit nem kell teljes átesésre oktatni, mert a technika miatt az szükségtelen. A Boeing 1990-től kezdte polgári gépekre is fejleszteni a rendszert, 1992-től egy B757-es flying testbed segítségével alakították ki a végleges megoldást, a B777-esen pedig 1994-től repül a digital fly by wire. A Boeing ugyan valóban később indult a FBW rendszerrel, ám rögtön egy hússzor gyorsabb, kétirányú buszrendszerrel (ARINC 629) kezdett dolgozni a korábban elterjedt 429-es helyett de a  fő különbség magában a logikai felépítésben van. 
Mindkét gyártó automata védelmi rendszereket épített a vezérlésbe, ám a pilóta egészen más módon helyezkedik el a döntési rendszerben.

Airbus FBW séma - Klikk a képre a nagyításhoz
Mint az FBW Airbusok kormányzásánál kitértünk rá, a pilóta itt vektorparancsokat ad alapvetően, melyeket a repülőgép számítógépei alakítanak az éppen fennálló repülési helyzetnek megfelelő mértékű kormánymozgássá. A fenti ábrán épp  a bólintási csatorna felépítését látjuk. Látható, hogy a számítógép gyakorlatilag sorba van kötve a pilóta vagy a robot utasításaival, felülbírálni az általa kidolgozott kormánykitérést normál módban nem lehet. Ám mint az ismeretes, az AF447-es járaton a normál mód lekapcsolt, így a védelem nagy része is. A gép közben már átesett, a pilóták pedig a földig tanakodtak, mit kéne tenni, egyáltalán mi történik a géppel a vaksötétben. 

Boeing FBW séma - Klikk a képre a nagyításhoz
A Boeing nem egymás mögé tette a pilótát és a számítógépet, hanem egymás mellé. A rajzon itt is pirossal jelzett dobozkák itt is ugyanúgy rendelkeznek védelmi funkciókkal, ám a pilóta bármikor képes közvetlen parancsot adni a kormánylapokat mozgató végrehajtóegységeknek (ACE-k). A védelmi korlátok nem veszik ki a pilóta kezéből a gépet, de határozott, hallható, látható, a kormányon érezhető jelzéseket, akár kormányerő terhelést is adnak. 
A Boeing 777-es több mint ezer példányával 18 millió repült óra teljesítése közben a mai napig egyetlen gépvesztés történt, pálya előtti földetéréssel*. (Az ok egyébként a szokatlan hidegben teljesített Peking-London járat alatt lejegesedő tüzelőanyagrendszer volt) . A gép tolóerő nélkül a pálya elé érkezett, ezért a siklást megnyújtandó a pilóták visszább húzták a fékszárnyakat. Földetérés előtt az autopilot ugyan igyekezett az eredeti siklópályán tartani a gépet, ám a kézi kormányparancsnak engedelmeskedve a gép visszabólintott a pilóta által épp átesés felett tartott, szögre. Az átesési sebesség megközelítésekor azután a figyelmeztető rendszer és a kormányrázó (stick shaker) jelzésére ismét finoman korrigált a pilóta. Utóbbi mechanikus jelzőt az Airbus szintén lehagyta a gépeiről, miközben egyébként a sidestick rendszer műszakilag nem zárná ki a kormányrázó megkerülhetetlen, taktilis jelzését. Ennek szintén szerepe lehet az Air France balesetben, bár a Bizottság ennek kiépítését nem feszegeti.

Lehetnek persze bármilyen kisebb-nagyobb ergonómiai furcsaságok, vagy tervezési problémák is egy járművön, a típussajátosságok elsajátítása, és a józan repülési ismeretalkalmazás kulcsfontosságú a veszélyhelyzetekben. Ha ez nem elég hangsúlyos része az oktatásnak, baj esetén ismeretlen helyzettel fog találkozni a személyzet. 
Bár a szimulátorok messze nem tökéletesek, a balesettel végződő egyensúlyvesztéses események magas arányszáma nem indokolható ezzel. A repülés alaptörvényei ugyanis ismertek. A kérdés az, hogy a pilótát elszigeteljük-e ezektől, vagy a rendszeres oktatásban frissítjük az ismereteket. Ez - mint látható - független a gépek automatizáltsági fokától, a fly by wire-től méginkább. Az utasszállító repülőgépek útvonalon, különösen a hosszútávú óceáni vonalakon teljesen automatizáltan repülnek, és ez így van évtizedek óta. A pilóták "betekerik" az esetleges változtatásokat, amelyeket a gép magától végrehajt. Ez történt esetünkben is, mikor a zivatartérségben enyhén irányt módosítottak a géppel. A probléma a sebességhiba utáni robotleoldáskor keletkezett, amikor is elképesztően szélsőséges mozdulatokkal  vette át a pilóta a gépet. Ezek a heves felhúzásirányú mozgások - bár érthetőek - a valóságban nem indokolt ösztönreakciók voltak


A bizottság már korábban is ismert szakmai álláspontokkal egybehangzóan nemcsak az előfordulható egyensúlyi és sebességproblémák megoldásának élethű gyakorlását szorgalmazza, hanem a személyzet fokozott terhelés melletti problémamegoldó gyakorlatait is.

Röviden a szimulációról

A Bizottság kiemelten kitér a szimulátorképzés fejlesztésére. Itt két részre érdemes bontani a mai állapotokat. A problémás helyzetek kigyakorlására már most sokkal több lehetőséget adnak a szimulátorok, mint amennyit a tananyag kötelezően tartalmaz. A blog egyik Airbus képzést is ismerő segítő-tanácsadója megerősítette, hogy átesésközeli helyzeteket a rendszeres szimulátorgyakorlatokon ritkán, vagy csak repesemény után vesznek elő. Van tehát bőséges lehetőség az azonnali fejlesztésre is az iskolapadban és a kiképzőszimulátorokban is megfelelő tematika mellett.

Kiképzőszimulátor - itt is van teendő

Ugyanakkor a szimulátorok - dacára annak, hogy teljes kiképzésekre, sőt, típusfejlesztésekre is használják őket, - esetenként még mindig  csak közelítik a valóságot. A mai modern full flight eszközök a szélsőséges aerodinamikai helyzeteket csak nagyjából tudják imitálni.  A szimuláció pontatlansága tehát a durván szélsőséges repülési, meteorológiai értékek mentén rosszabb. Ez meglepő lehet, de nem indokolatlan. Ha lenne tökéletes képlet a levegő viselkedésének leírására, nem  végeznének drága szélcsatornamodellezéseket a kutatók, jóval egyformábbak lennének a repülőgépek, és nem lenne probléma pl., hogy "kölcsönvette" az Airbus az Aviation Partners wingletjét....  
A professzionális kiképző szimulátorok azonban - alkotóikhoz hasonlóan - még nem tudnak mindent a fizikáról. A fejlesztés főként két síkon folyik: a gép viselkedésének és a repülési közeg matematikai modellezésének javításával, illetve gyakorlati fizikai modellezések, tesztrepülések adatainak számítógépes feldolgozása útján.

Egyéb képzési gondok - A hatóság is "kapott"

Hiányolja a jelentés a személyzetek együttműködésének (CRM) magasabb szinvonalú oktatását - künösen a váratlan, azonnali beavatkozást igénylő helyzetekben, mint amilyen a megbízhatatlan sebességjel (“Unreliable IAS”) probléma is. 
Az üzemeltetési, technikai tapasztalatok, személyzet általi jelzések komolyanvételét, szabályozottabb és jobb visszacsatolását is szorgalmazza a jelentés. A jelentés publikálásakor az Air France egyébként azonnal be is jelentette, hogy létrehozza az ehhez szükséges szervezeti rendszert.
A DGAC francia légügyi hatóságot ajánlásban szólítja fel a Bizottság, hogy tegye hatékonyabbá az ellenőrzési rendszerét, lévén az üzemeltetőnél történt hatósági ellenőrzések soha nem tártak fel olyan problémákat, amelyek a személyzet együttműködési hiányosságait, vagy a pilóták manuális vezetési készségeinek gyengeségét jelezték volna.

Óvatos a hangvétel a gyártó felé

A zárójelentéssel párhuzamosan kiadott biztonsági ajánlások "címzettjei" közt gondosan kerülik a gyártó akár név nélküli emlegetését is. Ennek szellemében általánosságban, az európai légügyi hatóság szerepét ellátó EASA felé intézte a vizsgálóbizottság mindazon ajánlásait, amelyek az típusképzési tematika, avionikai rendszerfelépítés és a cockpit-ergonómia problémáira utalnak.  Ez bár nem kivételes BEA gyakorlatában, mégis feltűnő sajátossága a záróanyagnak. Az amerikai  NTSB pl. egyáltalán nem, de maga a BEA sem mindig ilyen szemérmes a gyártókkal szemben (...). Mint korábbi cikkünkben írtuk, az Airbus koncepció meglehetősen egységes lett a DFBW korszakban, így nyilvánvalóan komoly súlya van bármilyen kritikának a képzési rendszert vagy a humán interfészt és egyéb konstrukciós témaköröket illetően.  Ennek ellenére a jelentést átolvasva szépen kirajzolódnak a kérdőjeles pontok. Szakmailag tehát a BEA jelentés mégis korrekt.
A felvetett problémák, melyeket viszonylag konkrétan be lehet sorolni a gyártói hatáskörbe:
- Egyértelmű, dedikált vizuális átesésjelzés hiánya. (Nincs állásszög indikáció, és dedikált jelzőfény sem, ahogyan stick shaker sem.)
- Az átesésjelzés szakaszossága, megszűnése 60 csomó mért sebesség alatt (Ennek következtében - mint azt korábban írtuk - a gép bólintó mozgására szólalt meg az átesésjelző, mikor a pitot csövek befordultak az áramlás irányába, és mérni kezdtek, ezzel viszont fordított jelzést adtak a megszokotthoz képest, hiszen épp a túl nagy állásszögnél kell működésbe lépnie a jelzőnek.)  

A Flight director üzemállapota (szürke) és mutatott értékei (zöld), valamint a kormánymozgás (narancs) és az átesésjelző (piros) egy időegyenesen.

- A kormányparancs mutatók (flight director) szintén ki-be kapcsoltak a fő kijelzőn. Ráadásul - bár ez nem bizonyított -  a sajátosan működő átesésjelzővel logikai ellentmondásba is kerülhettek. A személyzet számára nem volt egyértelmű, milyen üzemi helyzetben jelennek meg a mutatók, és mikor, miért tűntek el.  Emiatt javasolja a bizottság a flight director reaktiválási rendszerének felülvizsgálatát is.   
- Az általános figyelmeztető jelzés (Master caution)  és az ECAM hibaüzenetek nem adnak egyértelmű tájékoztatást a pilótáknak a hibákról, folyamatokról.
- A típusképzési anyagok fejlesztése, feljebb említett különleges helyzetek, egyensúlyi és sebességproblémák esetén követendő eljárások teljesebb és hatékonyabb meghatározása.

Folytatjuk

Az eredeti logikai felépítést követve sorozatunkat a humán  interfész, ergonómia, kormányérzetek  boncolgatásával, műszaki hátterével, illetve a gép és a pilóta együttműködésével folytatjuk. Saját anyagaink összeállítása közben többször kérdeztünk konvencionális (Boeing, MD) és Airbus kabinban és képzésben is tapasztalt pilótákat, akik több ponton azonos problémákra mutattak rá az Airbus koncepcióban, mint most a bizottsági jelentés.
Ennek ellenére nem szabad azt gondolnunk, hogy a BEA által most publikált felvetések mind kizárólag az Airbus vagy az Air France háza táján aktuálisak. Az automatizálás persze elkerülhetetlen a repülésben. Bár  hajlamosak vagyunk olykor azt hinni, hogy a fejlődés a személyzet létszámának leépítésről szól, valójában a folyamatosan sűrűsödő légiforgalom levezénylése is szükségessé teszi, hogy számítógépek felügyeljék a biztonságunkat. A döntési láncban azonban még sokáig ott lesz a pilóta, aki viszont a gépet felügyeli, hogy adott esetben azonnal átvegye a repülést. Erre is kitérünk hamarosan.

* A cikk írásáig a B777-es összesen két gépvesztéses balesetet szenvedett. Az első a fent említett tüzelőanyag jegesedéses esemény, a másik pedig egy földi kabintűz volt. 


 Creative Commons Licenc
ÖSSZES ÍRÁSUNK AZ AF-447-ES JÁRATRÓL >>

2011/07/06

A VNAV, avagy egy lehetőség a stabil megközelítésre - Izmir és Iraklion (Heraklion) - példák, magyarázatok pilótaszemmel


Kedves Olvasók!

Goldeneagle írásával folytatjuk a blogot a nem precíziós eszközökkel felszerelt repülőterek, illetve általában véve a nem precíziós megközelítések eljárásairól. Az apropó a Malév heraklioni járata kapcsán felvetődött kérdés: - Hogyan lehet a nagy repterek felszereltségétől eltérő, egyszerű VOR adóval felszerelt repülőtér megközelítéséhez felhasználni a modern repülőgépek rendszereit - így a mai Boeing 737-esekét is.
A cikk jellegéből fakadóan több szaknyelvi rövidítést tartalmaz. Ezeknek egy kis összefoglaló szószedetet is készítettünk az érdeklődők számára - ahol szükségesnek éreztük, ott közérthető fordítással. (A szerző természetesen Boeing terminológiát használ a cikkben).
Adósok vagyunk még a Repülési ismeretek rovat elindításával ahol ezek részletesebb kitárgyalása is meg fog történni. Addig ezzel a kis kiegészítővel fogadjátok szeretettel az index fórumon már beharangozott írást.
(a szerk.)


Szószedet, rövidítések a cikkhez:


ALT HOLD - magasságtartás üzemmód
AMSL - Above Mean Sea Level - tengerszint feletti magasság
AP - Autopilot
APP - Approach  - megközelítés
AT - Autothrottle - tolóerő automata
DH - Decision Height - elhatározási magasság
DME - Distance Measuring Equipment - távolságmérő berendezés (földi válaszjeladó alapján)
DRAG REQUIRED - (plusz) légellenállás szükséges
FD - Flight Director  - a kívánt repülési pályához szükséges kormányparancsok mutatói
FMC - Flight Management Computer
FMS - Flight Management System
GS - Glide Slope - siklópálya
HDG - Heading - géptengely irányszög (mágneses)
ILS - Instrument Landing System - műszeres leszállító rendszer (preciziós)
LNAV - Lateral Navigation
LOC - Localizer  - pályairány- vagy iránysáv adó 
MAP - Missed Approach Point - megszakított megközelítés kezdőpontja
MCP - Mode Control Panel
MDA - Minimum Descent Altitude - legalacsonyabb süllyedési magasság
SOP - Standard Operating Procedure
VNAV - Vertical Navigation
VNAV PATH - vertikális profilkövetés üzemmód
VOR - VHF Omnidirectional Range - körsugárzó VHF rádió-irányadó
VOR radiál - az az irány, amelyen a VOR állomást megközelítjük vagy elhagyjuk





A VNAV, avagy egy lehetőség a stabil megközelítésre


Napjainkban, a repülőgépek navigációját már nem is lehetne elképzelni számítógépek sokaságát tartalmazó Flight Management System nélkül. Ezek a berendezések tartalmazzák a navigációs adatbázist, valamint a repülőgépek teljesítményadatait kezelő táblázatok sokaságát, amelyek nemcsak a felszálláshoz szükséges sebességeket határozzák meg, hanem azt is, hogy egy adott súlyhoz, légköri viszonyhoz képest milyen optimális sebességen kell emelkedni, illetve azt is, hogy mi az a pont, ahol a leszálláshoz a süllyedést meg kell kezdeni olyan módon, hogy a repülőgép a siklópálya elfogásáig kvázi alapjáraton tudjon süllyedni és csak a leszálló konfiguráció beállításához legyen szükséges gázt adni.
Természetesen, ez csak „laboratóriumi” körülmények között valósítható meg, mivel a levegőben igen sok repülő tartózkodik, és süllyedés nem mindig biztosítható folyamatosan. A VNAV tulajdonképpen nem más, mint a Vertical Navigation rövidítése, amely rendszer repülőgép függőleges helyzetét hivatott optimalizálni, mint emelkedő, utazó valamit süllyedő és megközelítési üzemmódban. Az utóbbi opcionális, később térek ki rá hogy miért.
A repülőgépek repülési hosszirányú repülési pályáját a szintén integrált és összetett LNAV (Lateral Navigation) rendszer látja el, ami nem csinál mást, mint a betáplált útvonalon végigvezeti a repülőgépet. Az LNAV és VNAV rendszerek a pilóta számára kormányparancsokat jelenítenek meg és ezeket a pilóta vagy kézzel, vagy az esetek 95%-ban autopilótával /AP/ hajtja végre. 
 
Mégegy eleme van a repülőgép vezérlésének, ez pedig a tolóerő automata (AT vagy AutoThrotte) . Ez nem csinál mást, mint az előre beállított sebességet tartja, vagy azt a sebességet tartja amit a VNAV utasít neki. Ez opcionális, a pilóta választhatja ki. 
Amennyiben ha minden rendben van, akkor egy B737-es Classic vagy NG LNAV, VNAV, AT + AP üzemben repül gyakorlatilag a végső megközelítés megkezdéséig. 
 
Itt változik a helyzet, mert napjainkban, a repülőterek nagy része ILS (Instrument Landing System) berendezéssel felszerelt, és a repülőgépek automatikus rendszerei tudják követni az ILS jeleit és gyakorlatilag (ha olyan a földi rendszer pontossága is) földig vezetik a repülőt végrehajtva egy automatikus leszállást.
Az ILS megközelítés során, már nem LNAV/VNAV üzemben megyünk, hanem a APP, AT+AP dolgozik, egészen az elhatározási magasságig (DH - decision height) ahol is a lekapcsoljuk az AP-t, AT-t és kézzel hajtjuk végre a leszállást. A robot lekapcsolását követően, ettől még a személyzet számára ott van a kijelzés siklópálya és az iránysáv helyzetéről, de a leszállás kézzel történik.
A VOR megközelítések esetében a leszálló irányt egy VOR radiállal jelölik ki, amely mentén a repülőgép halad, és pályához képesti függőleges helyzetének meghatározáshoz, távolságokat határoznak meg a repülési pálya alatti akadályokhoz képest, és az adott akadály vagy domborzat átrepülését követően süllyedhet a repülő a következő magassági lépcsőre. A legalsó magassági lépcső az ún. MDA (minimum descent altitude) azaz a magasság, ami alá semmiképpen sem szabad menni, maximum előreutazni addig, ameddig a pályát meg nem látjuk.
Az alábbi térképen látható egy hagyományos lépcsős, és egy újfajta virtuális siklópályás megközelítés Izmir repülőterére

A képen jól látszik, hogy végső megközelítés 3500 lábon kezdődik, és tartalmaz egy lépcsőt 2700 lábra, amit 7 mérföldnél lehet elhagyni. Után jön a süllyedés a MDA-ra ami itt 1150 láb AMSL, 738 láb a talaj felett, és ezen lehet előreutazni nagyjából 3.0 mérföld MEN DME távolságig. Ez az átstartolási pont (Missed Approach Point - MAP). Innen vagy leszállunk, vagy folytatjuk. Ha innen vesszük csak észre a pályát, akkor könnyen lehet egy instabil „behullás” -szerű leszállás a vége, illetve nem biztos hogy megfelelően tudjuk felvenni a végső süllyedési profilt. Ez itt nem annyira „kihegyezett” helyzet, de van olyan repülőtér, ahol a MAP sokkal közelebb helyezkedik el a futópályához.
 
És ez volt az a pont, amiért a repülőgépgyártók igyekeztek a precízebb FMS-eket létrehozni. Miért? Azért, mert gyengébb látási viszonyok között, előfordulhat az, hogy az MDA-n olyan magasan kerülünk a pálya fölé adott távolságon belül, hogy onnan egy stabil megközelítés nem valósítható meg. Magyarul nagyon nagy mértékű süllyedésbe kell vinni a repülőt ahhoz, hogy ne a pálya felénél szálljon le, kockáztatva egy kemény leszállást, vagy egy esetleges túlfutást a pályán.

A Jeppesen pár éve elkezdett ráállni arra, hogy elkészítsen olyan navigációs térképeket, amelyek – ha a domborzat lehetővé teszi - folyamatos süllyedést biztosítsanak még abban az esetben is, ha elektronikus siklópálya (GS-Glide Slope) nem áll rendelkezésre. Ezt úgy érik el, hogy létrehoznak két-három navigációs pontot, ami persze konform az AIP-vel (Aeronautical Information Publication – Az országok által kiadott tájékoztató kiadvány, ez alapján készül a Jeppesen is) és ezen 2-3 ponthoz magasságokat/sebességeket rendelve kialakul egy virtuális siklópálya. 
 
A repülőgép FMC-je ezt felhasználva kiszámolja azt a függőleges sebesség értéket, ami szükséges ahhoz, hogy az adott pontot adott magasságban keresztezze a repülőgép. Ez egy igen stabil megközelítést tesz lehetővé egészen a földet érésig. A leszállás mint minden más nem-precíziós megközelítés esetében kézzel történik. Az alábbi képen az iraklioni 27-es pálya megközelítése látható, az új és jelenleg érvényben levő eljárás szerint. Mellette pedig az a kép amit a személyzet lát az FMC-ben:


Hogyan is működik egy VOR/VNAV, LOC/VNAV bejövetel
 
A hosszirányú navigációra, továbbra is a hagyományos földi telepítésű VOR vagy LOC berendezés radiálját vagy iránysávját vesszük igénybe, és amikor az irányító engedélyezi a megközelítést, az SOP-nak megfelelően, élesítjük VOR/LOC üzemmódot az MCP panelen. Ekkor a repülésvezérlő rendszer, az utolsó hosszirányú üzemmódot HDG vagy LNAV megtartva addig halad előre ameddig az irányelfogás feltételei létre nem jönnek, és utasítást ad a rákapcsolt (coupled) autopilótának az iránytartásra.
 
Ez az a pont, ahol meg kell kezdeni a repülőgép konfigurálását, hogy a végső süllyedési szakaszban, minden a helyén legyen. Üzemmód: VORLOC+VNAV, AT+AP Mivel a repülőgép magasságtartás üzemmódban repül (VNAV PATH vagy ALT HOLD) a végső süllyedési pont felé, itt már csak egy dolga van a személyzetnek, hogy beállítsa azt a magasságot amire süllyedni szeretne és várni hogy a VNAV elvégezze a dolgát. A repülőgép az FD27 pontot elérve, megkezdi a süllyedést a 3.33 fokos siklásnak megfelelően, korrigál a gázon, hogy tartsa a az FMC-ben a ponthoz rendelt sebességet és egyenletesen süllyed. 
 
Figyelembe kell venni a személyzetnek a repülőgép esetleges üzeneteit amit az FMC-n keresztül juttat el hozzánk. Az egyik ilyen legfontosabb üzenet, a „DRAG REQUIRED” ami azt kell jelentse számunkra, hogy a repülőgép nem tudja a repülési pályát tartani például a szél megváltozása miatt és ezért azt kéri hogy rakjuk ki a spoilereket. Sokan figyelmen kívül hagyják ezt, lehülyézik a rendszert, de pont ez az a pont ahol a VNAV-ot még kordában lehet tartani. Ha nem segítünk a repülőgépnek, akkor akkor kezdetét veheti egy folyamat ami könnyen eredményezhet egy nagyobb sebességű, adott esetben instabil, magas bejövetelt. 
  
A DH-hoz közeledve, SOP szerint, még mindig autopilóta üzemmódban maradva beállítjuk az átstartolás magasságát, ki-be kapcsoljuk a flight director-t ezzel élesítjük egy esetleges átstartoláshoz és leszállunk. 
 
Remélem ez a pár oldal segített abban, hogy jobban meg lehessen érteni a megközelítés ezen üzemmódját azoknak is, akik csak lelkes rajongói a szakmának, vagy esetleg kacsintgatnak a szakma jobb megismerése, vagy netán elsajátításának irányába.

 
Goldeneagle